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Summary 

A comprehensive peptide assignment program and its application to a cyclic peptide, cyclosporin A, are 
presented in this paper. A group of graph theoretical algorithms using fuzzy logic are discussed with the 
aid of examples from cyclosporin A. The algorithms deal with heavily overlapped peaks, recover 
disjointed and distorted spin coupling networks, and include strategies for sequence-specific assignment. 
A procedure to extend the Protein Knowledge Base for automatically assigning non-standard amino acid 
residues is also presented. The program is capable of completely automated assignment for small 
peptides (~20 residues). For such molecules, it is insensitive to whether the peptide chain is cyclic or 
acyclic, and to whether amide protons are present or absent. For larger peptides/proteins, more user 
interaction is required and the sequence-specific assignment step usually must proceed through fragments 
smaller than the full length to avoid problems due to occurrence of a combinatorial explosion. The 
program can be applied as a rigorous tool to check manual assignments. The fuzzy graph theoretical 
concepts built in the program are illustrated with 2D proton spectra of a peptide, but may be extended 
to higher-dimensional spectra, other biopolymers, natural products and other organic structures. 

Introduction 

For most aspects of the process of determining high- 
resolution structures of small biopolymers from multidi- 
mensional (mD) NMR, efficient computer programs exist 
(Ernst, 1991). Programs for time-frequency transformation, 
signal enhancement, peak picking, peak list accounting, 
NOE and torsional constraint determination, distance 
geometry and restrained molecular dynamics calculation, 
and modelling have been well developed and are commer- 
cially available. The crucial step of computerized resonance 
assignment, however, is not well developed. Several com- 
puter-assisted proton assignment software packages have 
been reported for proteins, such as ANSIG (Kraulis, 1989), 
EASY (Eccles et al., 1991), CLAIRE (Kleywegt et ak, 
1991), etc. ANSIG is essentially an assignment support 
system, or 'electronic drawing board' (Kleywegt et al., 
1991). The others are experience-based systems that include 
a number of programs which can be of assistance in the 

process of assigning 2D proton NMR spectra of proteins. 
These experience-based systems emulate manual assignment 
procedures, starting to identify spin coupling patterns from 
the amide-a proton coupling region, then ranking the spin 
patterns with experience-based scoring rules. 

We recommend that rule-based assignment software 
should meet the following design criteria: 

(1) The software should automate the creation of spin 
coupling patterns from spectra. 

(2) It should provide automated and user-interactive 
identification of spin coupling patterns. 

(3) It should automate the process of sequence-specific 
assignment. 

(4) The software should be robust toward common over- 
laps, including peak overlaps and spin coupling pattern 
overlaps. 

(5) The software should handle experimental data set 
incompleteness, redundant information, artifacts and im- 
purity peaks. 
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(6) The software should allow the user to control the 
assignment procedure at each step. 

(7) The software should be general purpose, and 
should not reject any substructures or residues such as 
prolines or non-standard amino acids. 

This paper will focus on IH assignments in peptides or 
proteins, for which the principles of manual assignment 
are well known (Wfithrich, 1986). Encoding these prin- 
ciples into a software system, however, is not easy. Fortu- 
nately, concepts in graph theory and fuzzy logic provide 
a useful framework. Each type of amino acid has a unique 
expected spin coupling pattern, which is called the 'Clus- 
ter Center'. The Cluster Center is 'fuzzy', where fuzzy 
implies that the chemical shift set of the Cluster Center 
may be incomplete and the values may have larger devi- 
ations than expected; also, the spin coupling connectivity 
may be incomplete due to missing peaks, spin degeneracy 
or other reasons. This fuzzy graph should be described in 
a rigorous mathematical framework. The program must 
map an experimentally observed spin coupling pattern 
onto the Cluster Center of a specific amino acid residue 
or a set of amino acids. If the mapping is ambiguous, the 
program should choose the best mapping. If one spin 
coupling pattern can be mapped onto more than one type 
of residue due to pattern incompleteness and spin coup- 
ling pattern overlaps, then the program should include all 
possibilities. This mapping problem is addressed in Fuzzy 
Graph Pattern Recognition, which is an NP-Complete 
problem in computer science (NP -- nondeterministic pro- 
cedure; Xu and Zhang, 1989). 

Peak overlap, artifact peaks and missing peaks are 
difficult and realistic problems in NMR assignment. In 
the manual assignment process, skilled spectroscopists are 
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Fig. 1. Superimposition of a TOCSY and a COSY spectrum. T~, is the 
intra tolerance, which is used to determine if two COSY cross peaks 
can be merged; T~ is the inter tolerance, which is used to determine 
whether a TOCSY cross peak can be used to prove that two COSY 
cross peaks belong to the same spin system. Normally, T m < T~. 

able to solve most of these problems by assessing line 
shapes, long-distance coupling connectivities, global spin 
coupling patterns and other spectral information. A 
mathematical procedure for this spin pattern identifica- 
tion must be clearly defined. A protein may contain a 
number of the same type of residues, and a spectroscopist 
assigns them to specific residues by checking NOESY 
peak connectivities (Wiithrich, 1986), or NOESY and 
COSY peak pattern connectivities (DiStefano and Wand, 
1987; Englander and Wand, 1987; Wand et al., 1989). For 
larger proteins (number of residues > 40), a 'combina- 
torial explosion' is possible in the sequence-specific as- 
signment step. This normally occurs when some sequen- 
tial NOEs are missing because of the local conformation, 
are hidden below other peaks, or are broadened by inter- 
nal motion in the molecule (Billeter et al., 1988). The nor- 
mal strategy is to identify fragments consistent with a 
chain of NOE connectivities, then search the unused 
peaks for chains consistent with other fragments of the 
sequence. 

In our previous papers (Xu et al., 1993a,b; Xu and 
Sanctuary, 1993; Xu and Borer, 1994; Xu et al., 1994), 
three primary algorithms were developed and described: 

(1) a Constrained Partitioning Algorithm (CPA) was 
developed for automated and rigorous connection of 
COSY cross peaks to produce spin system patterns; 

(2) a Fuzzy Graph Pattern Recognition Algorithm 
(FGPRA) for mapping these spin system patterns onto 
residues; and 

(3) a Tree Search Algorithm (TSA) for sequence-speci- 
fic assignment. 

Since then, several improvements have been imple- 
mented. These include: 

(1) a Constrained Partitioning of Spin Patterns Algo- 
rithm (CPSPA) for merging disconnected spin patterns; 

(2) a Constrained Tree Search Algorithm (CTSA) for 
more efficient and reliable sequence-specific assignment; 

(3) the extension of the residue knowledge base to 
include non-standard residues or substructures; and 

(4) a number of methods to deal with artifact peaks, 
distorted spin patterns, and disconnected patterns. 

All of these will be discussed in this paper. These new 
developments will be illustrated by assigning the 1H res- 
onances of cyclosporin A in benzene-d 6 using 2D homo- 
nuclear spectra. 

Algorithms 

CPSPA (Constrained Partitioning Spin Patterns Algo- 
rithm) 

Our original CPA was a globally competitive algo- 
rithm. That is, if a COSY cross peak P can be partitioned 
to more than one spin system, P will be partitioned to the 
one which has the best MD (match degree) value. The 
MD is defined in Eq. 1 and illustrated in Fig. 1: 



Case A 

Case B ~ - ~  

Fig. 2. For a valine spin system, CPSPA can merge Case A (four- 
bond TOCSY transfer), but not Case B (five-bond TOCSY transfer). 
Case B will be suggested by the program, and merged with the per- 
mission of the user (see the application part of this paper). 
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TABLE 1 
STATISTICS OF SHORT 
CRYSTAL STRUCTURES 

1HJH DISTANCES IN PROTEIN 

Type Distance (/k) NOE intensity Probability 
j - i = 1 (%) 

dNN(i,j) _< 2.4 Strong 98 
_< 3.0 Medium 88 
< 3.6 Weak 72 

d~N(i,j ) _< 2.4 Strong 94 
_< 3.0 Medium 88 
_< 3.6 Weak 76 

d~N(i,j ) _< 2.4 Strong 79 
_< 3.0 Medium 76 
< 3.6 Weak 66 

M D  = 1 - ~ + + 
t L )  CL)  

(1) 

where Am is the deviation of  the common  frequency be- 
tween two COSY cross peaks to be merged, and A l and A 2 
are deviations of  the T O C S Y  cross peak and the two 
COSY cross peaks. In Fig. 1, for example, TOCSY peak 
T1 can be used as the proof  to merge COSY peaks P1 and 
P2, then A m = Ira2 - m2'l, A 1 ~ Iml - col'l and A 2 = Ira3' - 
m3"I. 

When CPA is applied to Fig. 1, COSY peaks P1 and 
P2 will be merged because of  T O C S Y  peak T1; however, 
P3 may be merged to the P1-P2 spin system, or to P4, 
depending on the M D  values. I f  MD(T2,  P3, P2) > 
MD(T4,  P3, P4), then eventually P3 and P4 will be parti- 
t ioned to the same spin system. However, if MD(T2,  P3, 
P2) < MD(T4,  P3, P4), then the P3-P4 spin system will be 
produced first, and the P1-P2 and P3-P4 spin systems will 
remain disconnected. The T O C S Y  peaks T2 and T3 
would indicate combining P1-P2 and P3-P4 together, but 
CPA cannot  work on two spin coupling networks; it 
works only on COSY peaks. 

CPSPA was developed to solve this problem. The 
algori thm is described as follows: 

For (all spin systems from CPA) 
{ 

i = current spin system; 
for (all spin systems from the (i+l)th spin system to 
the last spin system) 
{ 

j = current spin system; 

I f  (i and j have the same chemical shift within the 
given intra tolerance) 
{ 

I f  (a four-bond T O C S Y  correlation between i 
and j is found within a given inter toler- 
ance) 

merge spin system j to spin system i; 
}; 

}; 
}; 
CPSPA uses the same intra and inter tolerances as 

used by CPA. To keep the algorithm rigorous, CPSPA 
merges only case A in Fig. 2, whereas C A P R I  uses 
another  algori thm to deal with case B in Fig. 2. 

CTSA (Constrained Tree Search Algorithm) 
In our  previous work (Xu et al., 1993b), TSA generated 

a so-called R T G  (Residue To spin network Graph  rela- 
tions) supergraph. In RTG, each node is a spin system 
and edges are N O E S Y  correlations among  spin systems. 
Normally,  R T G  is a very complicated network. Because 
there is no way to physically distinguish N O E  peaks from 
neighboring or non-neighboring residues, TSA searches 
for the sequence-specific assignment by finding the best 
N O E S Y  connection path  in RTG. This non-constrained 
search is not very robust when it searches through larger 
peptides. 

In order to improve the automated  sequence-specific 
assignment, CTSA also uses as constraints the probabili ty 
that  short  ~H-lH backbone distances in proteins are 
between nearest-neighbor residue pairs (Wiithrich, 1986). 
These constraints are listed in Tables 1 and 2. 

TABLE 2 
COMBINED INTERRESIDUE PROBABILITY ESTIMATION BASED ON NOESY CROSS PEAKS 

Type Distance (A) NOE intensity Type Distance (A) NOE intensity Probability j - i = 1 (%) 

d~N(i,j) _< 3.6 > weak dNN(i,j) < 3.0 > medium 99 
d~N(i,j) <- 3.6 > weak d~N(i,j ) _< 3.4 -> weak 95 
dNN(i,j) < 3.0 > medium d~y(i,j) _< 3.0 > weak 90 
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Before Fuzzy Graph Pattern Recognition 

NET3 ~ 

NET6 ~ 

After Fuzzy Graph Pattern Recognition 

NET3 ~A// s p ~  

I [~' 
Partial spins renamed 

Fig. 3. Backbone protons are recognized and marked by FGPRA.  
NET3 is uniquely matched to a valine residue, therefore, all spins are 
renamed. NET6 can be matched with more than one residue and thus 
it can only be partially renamed, due to potential ambiguities. 

In order to apply these constraints to the search pro- 
cedure, CTSA must be able to distinguish the backbone 
and non-backbone spins. This is done by FGPRA (Fuzzy 
Graph Pattern Recognition Algorithm). FGPRA can map 
spin coupling systems to residue space, i.e., each spin 
coupling network will be assigned to a set of possible 
residues. If a spin coupling network is uniquely assigned 
to a residue, then all chemical shifts will be renamed as 
the corresponding atom names, such as amide proton, 
alpha proton, etc. However, if a spin coupling network is 
mapped to more than one residue, FGPRA cannot 

TABLE 4 
T H E O R E T I C A L  N E I G H B O R I N G  NOE MATRICES FOR H~-NH 
CONNECTIVITIES IN THE SEQUENCE Gly-Arg-Gln-Ala-Gly 

Gly 1 Arg 2 Gln 3 Ala 4 Gly s 

Gly I 0 2 0 0 0 
Arg 2 0 0 1 0 0 
Gln 3 0 0 0 1 0 
Ala 4 0 0 0 0 1 
Gly 5 0 0 0 0 0 

The matrix elements represent the number  of  theoretical neighboring 
NOEs. 

rename all chemical shifts because of possible ambiguities, 
but it can always rename the backbone atoms by marking 
these backbone protons. CTSA can then use the con- 
straints shown in Tables 1 and 2. For non-peptide resi- 
dues, the 'backbone' protons can be defined by the user 
to enable the program to deal with other types of mol- 
ecules. This procedure is illustrated in Fig. 3. 

Sequential NOEs occur between the amide, a, and/or 
]3 protons of one residue and the amide proton of the 
following residue in the chain, which can be represented 
by Neighboring NOE Matrices (NNMs). For example, if 
we have a peptide which has the following sequence: Gly- 
Arg-Gln-Ala-Gly, we can generate the theoretical NNMs 
as listed in Tables 3-5. 

It should be noted that NNM(H~-NH) and NNM(H ~- 
NH) are asymmetrical, and provide efficient constraints 
for the Tree Search. These matrices are generated from 
the NOESY peak table and the experimental, backbone- 
marked spin coupling networks. The matrices are stored 
to a file in a compressed format. With these constraints, 
CTSA is much more efficient and robust than the previ- 
ous TSA. 

The extension of the Residue Knowledge Base (RKB) 
The Residue Knowledge Base (RKB) contains the spin 

coupling pattern cluster centers for all 20 standard amino 
acids. Each cluster center contains a set of expected 
chemical shifts, their standard deviations and theoretical 
spin coupling connectivities. GroB and Kalbitzer (1989) 
have reported a statistical analysis of proton chemical 
shifts in proteins; their work was used in our previous 
program (Xu et al., 1993b). Currently, the RKB data 

TABLE 3 
THEORETICAL N E I G H B O R I N G  NOE MATRICES FOR N H - N H  
CONNECTIVITIES IN THE SEQUENCE Gly-Arg-Gln-Ala-Gly 

Gly 1 Arg 2 Gln 3 Ala 4 Gly 5 

Gly I 0 1 0 0 0 
A r f  1 0 1 0 0 
Gln 3 0 1 0 1 0 
Ala 4 0 0 1 0 1 
Gly s 0 0 0 1 0 

The matrix elements represent the number  of  theoretical neighboring 
NOEs. 

TABLE 5 
T H E O R E T I C A L  N E I G H B O R I N G  NOE MATRICES FOR H~-NH 
CONNECTIVITIES IN THE SEQUENCE Gly-Arg-Gln-Ala-Gly 

Gly 1 Arg 2 Gln 3 Ala 4 Gly 5 

Gly I 0 0 0 0 0 
Arf  0 0 2 0 0 
Oln 3 0 0 0 2 0 
Ala 4 0 0 0 0 1 
Gly ~ 0 0 0 0 0 

The matrix elements represent the number  of  theoretical neighboring 
NOEs. 
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Fig. 4. Theoretical spin coupling network prediction. 
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come from B. Sykes and D. Wishart (Department of 
Biochemistry, University of Alberta, Canada). 

In order to recognize non-standard amino acid residues 
or other substructures, RKB needs to be extended. The 
critical part of this extension is to predict the theoretical 
spin coupling networks based upon a given structure/ 
substructure. These spin coupling networks are repre- 
sented in adjacency tables (AT), which should be error- 
free. An example is given in Fig. 4. 

Currently, our prediction algorithm for spin coupling 
networks considers two- or three-bond proton-proton 
couplings; it can be extended to consider couplings over 
more than three bonds if an unsaturated bond is present. 
When the theoretical spin coupling networks are pre- 
dicted, the user may add expected chemical shifts and 
their standard deviations (normally 0.50 ppm is a good 
default value) to the table, and save this to the Residue 
Knowledge Base. 

Application to cyclosporin A 

The structure of cyclosporin A has been well studied, 
both in the crystal and in solution (Kessler et al., 1985, 
1989; Loosli et al., 1985; Lautz et al., 1989,1990; Fesik et 
al., 1991; Weber et al., 1991). For our work, SIMPLE- 
COSY, TOCSY and NOESY spectra of cyclosporin A 
were measured in C6D6 at 303 K at 500.1 MHz on a GN- 
500 spectrometer (Pelczer, 1991). Spectral processing and 
peak picking were accomplished with TRIAD 6.1. 

Nine of the 11 amino acid residues in cyclosporin A 
are non-standard residues, and seven of them have no 
amide protons. Based on substructures, we have predicted 
the theoretical spin coupling networks for these non-stan- 
dard amino acid residues, namely, MeBmt, Abu, Sar, Me- 
Val and MeLeu. Residue 8 is a D-alanine, which should 

have the same theoretical spin coupling network as for 
the standard L-alanine residue. The expected chemical 
shifts for these new theoretical spin coupling networks 
were adapted from similar residues in the RKB. For 
example, the expected chemical shifts for methylvaline are 
adapted from those of valine in the RKB. The theoretical 
standard deviations were derived from the observed stan- 
dard deviation of similar groups (for example, the amide 
proton standard deviation was the average of those of all 
19 amino acids), which in our experience allows sufficient- 
ly large deviations of observed frequencies. 

The assignment process refines the peak list. To test 
the capability of our program, we chose a very low thres- 
hold (just above the noise level), and picked all peaks in 
the COSY and TOCSY spectra. The first output of the 
program is the list of distinct theoretical spin coupling 
networks: 

1 MBT = {MBT1} 
1 ABU = {ABU2} 
1 SAR = {SAR3} 
4 NML = {NML4 NML6 NML9 NML10} 
1 VAL = {VAL5} 
1 ALA = {ALA7} 
1 UA = {DA8} 
1 NMV = {NMVll} 

This is followed by some preliminary statistics: 

Theoretical COSY Peaks = 57. Experimental COSY 
Peaks = 70. 
Theoretical Amide-Alpha COSY Peaks = 4. 
Experimental Amide-Alpha COSY Peaks = 7. 
Connecting COSY Peaks to create Spin Systems 
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Fig. 5. Three artifact peaks (indicated by arrows) highlighted (in the 
red circles) in the backbone region of the COSY spectrum of cyclo- 
sporin A. 

Subsequently, CPA and CPSPA output is obtained: 

28 Spin Coupling Networks are created. 14 uncon- 
nected peaks. 

These spin coupling networks are stored in a set of ad- 
jacency tables. 

Then FGPRA recognizes these spin coupling networks, 
and maps them onto the residue pattern space. It also 
indicates strange patterns as follows: 

Fuzzy Graph Pattern Recognition 

NET8 is a strange spin system! 

NET13 is a strange spin system! 

The output of our program indicates that we have 
picked too many peaks (57 theoretical, 70 picked), and we 
should delete at least 13 peaks, three of which are extra 
H~-NH peaks (four theoretical, seven picked). Of course, 
we should examine our peaks in the spectrum, but which 
peaks should be deleted? Fortunately, the program sug- 
gested these peaks by reporting that 14 peaks are uncon- 
nected, and these are put at the end of the Spin System 
list, and easily highlighted. For example, in Fig. 5, P1, P6 

and P7 have been highlighted as unconnected peaks. It is 
easy to see that they are all weak, and might come from 
artifacts or a minor conformer. 

The program also reports two 'strange' spin systems 
(NET8 and NET13, see above). By displaying the 
'strange' spin systems on the COSY spectrum, we easily 
see that spin systems NET8 and NET13 are 'strange', 
because COSY peaks due to a minor conformation acci- 
dentally share some frequencies with the larger peaks 
resulting from the main conformer. In the spectrum dis- 
play, these peaks are very weak, and we decided to delete 
them. As an example, NET13 is displayed in Fig. 6. 

After examining the COSY peaks with the assistance 
of the program, a total of 19 COSY peaks were deleted, 
and the program was run again. The resulting output was 
as follows: 

Theoretical COSY Peaks = 57. Experimental COSY 
Peaks = 51. 
Theoretical Amide-Alpha COSY Peaks = 4. 
Experimental Amide-Alpha COSY Peaks = 4. 
Connecting COSY Peaks to create Spin Systems 

13 Spin Coupling Networks are created. 2 Uncon- 
nected peaks. 

This time, the result is much improved. As expected, 
the total number of experimental COSY peaks is a bit 
less than the theoretical prediction. The number of NH- 
H a COSY peaks is as predicted. The program should 
generate 11 spin coupling networks. However, 13 spin 
coupling networks were reported, two of which come 
from unconnected COSY peaks. From the theoretical spin 
coupling topological prediction, residue Sar should have 
only one COSY cross peak. However, there are still more 
spin coupling systems present than are theoretically allow- 
ed. One alternative is to examine the peak list again to 
delete possible artifact peaks. Another possibility is that 
there are incomplete spin coupling systems. 

At this point it is often more fruitful to use the pro- 
gram to suggest mergers of spin systems based on 
TOCSY evidence. The merge condition is: 

If ((NETi and NETj have at least one common chemi- 
cal shift within intra tolerance)&& 

TABLE 6 
MERGE SUGGESTIONS FOR CYCLOSPORIN A 

NET1 NET2 Pattern OK TOCSY score  Common sh i f t  Common shift deviation 

Suggestionl NET4 NET11 Yes 0.73 2.189 0.00 
Suggestion2 NET 5 NET 13 Yes 0.82 4.201 0.00 
Suggestion 3 NET 11 NET 12 Yes 0.87 2.190 0.01 
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Fig. 6. The 'strange' spin coupling system NET13 is displayed on the COSY spectrum of cyclosporin A. P67 and P68 are weak, and come from 
a minor conformer or from four-bond couplings. 

(At least one long-distance TOCSY correlation peak 
is found within inter_tolerance)) 

NET~ and N E T  i can be merged together; 

The merge suggestions provided by the program for cyclo- 
sporin A are listed in Table 6, and each is examined in turn. 

In comparing the three suggestions, there is no strong 
reason to prefer one over the others: (i) Column 4 ('Pat- 
tern OK' )  indicates that the putative merges are still sub- 
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Fig. 7. According to the program's suggestion, spin coupling networks NET13 and NET5 are displayed, and verified to be the same spin coupling 
network. With the permission of the user, the program will automatically merge them. 
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Fig. 8. The spin coupling network resulting from merging NET5 and 
NET13. Two long-distance TOCSY correlations (arrows) have been 
found. The reason NET13 was not previously connected to NET5 is 
that the expected TOCSY peak at (3.374, 5.745) occurs at (3.321, 
5.741); the deviation between the expected peak and the observed 
peak is larger than 0.04 ppm. 

graphs of the theoretical spin coupling patterns; (ii) the 
'TOCSY Score' is a match degree similar to Eq. 1 and 
each of the three values are acceptable; (iii) the 'Common 
Shift Deviation' values are all small. However, only two 
of the suggestions, at most, can be accepted to leave 11 
remaining spin systems. 

User intervention now provides the best solution for 
choosing the most likely networks. As an example, Fig. 
7 displays NET5 and NET13. Figure 8 shows how the 
suggested merger uniquely matches the Mbt spin system 
(Fig. 4), using TOCSY peaks for Hy1-H821 and Hy1-HS1 
(five-bond transfers). Similar examination of NET4 and 
NET11 suggests a close match with the N-methylleucine 
spin system. Upon acceptance of this suggestion the pro- 
gram automatically eliminates Suggestion3, which also 
uses NET11. 

Long-range TOCSY transfers can follow many path- 
ways, so at the present time we prefer user interaction 
over a fully automated approach to resolve such si- 
tuations. It is interesting that the reason NET5 and 
NET13 were not joined previously is that the inter toler- 
ance (<0.04 ppm) was too small for CPA and CPSPA to 
use the four-bond TOCSY peaks corresponding to Hy1- 
Hy2 and Hy1-H(x, which are observed in the spectrum. It 
was only by good fortune that the peak picker located the 
Hy1-H821 and HT1-HS1 peaks within the inter tolerance 
for H821 and HS1, thus allowing the program to suggest 
merging NET5 and NET13. Hy1 is similar to a threonyl 
hydroxyl proton, so its chemical shift was substantially 
different between measurement of the COSY and TOCSY 
spectra. This sort of error will be common for situations 
where the chemical shifts of one or more protons are 
especially sensitive to environmental conditions, e.g., 
water content, temperature, pH, or isotope effects. This 
suggests that a useful strategy may also be to repeat 
CPSPA with looser tolerances after initial partitioning. 

The tree search to provide sequential assignment is 
simpler if all of the spin system ambiguities have been 
resolved. However, CTSA (illustrated below) could be 
applied, even for the 13 NETs present before application 
of the mergers that were just discussed. The simple user 
interaction just described reduces the searching space and 

provides a more certain outcome for larger peptides 
where the possibility of a combinatorial explosion is a 
concern. 

We now have 11 spin coupling networks. They are 
stored in the Spin System list and recognized by FGPRA. 
The results of this algorithm can be reviewed in two ways 
(i.e., G T R  and RTG super graphs), see Table 7 and Fig. 
9. The RTG (Residue To spin Graph) relation shown in 
Fig. 9 is the base data structure for the CTSA algorithm. 

When CTSA is applied to Fig. 9, it creates the asym- 
metric N N M  matrices based on the input NOESY peak 
list, then searches for the best path in the figure with the 
sequence constraints represented in N N M  matrices and 
the sequence information. Because most of the backbone 
amide protons have been substituted by methyl groups in 
cyclosporin A, only five neighboring backbone NOEs are 
found. These are MBTI.(xH-ABU2.NH, MBTI.I3H- 
ABU2.NH, NML4.c~H-VAL5.NH, NML6xxH-ALA7.NH 
and ALA7.NH-D-ALA8.NH, shown in Fig. 9 with thick 
arrows. The thin arrows represent the assignments with- 
out NOESY evidence. These assignments are made by 
using unique matches (for example, NET12 is uniquely 
matched to SAR3) and spin coupling pattern recognition 
(for example, NET7 is the only candidate for NMV11, 
since NET12 has been assigned to SAR3). The tty output 
of our program for sequential assignment is as follows: 

Present Assignment Candidates: 
MBTI:  NET5* 
ABU2: NET10 NET1 NET7 NET3* NET12 NET2 
SAR3: NET12* 
NML4: NET8* NET4* NET6* NET9 NET7 

NET12 
VAL5: NET12 NET7 NET10 NET1 NET3* 
NML6: NET8* NET4* NET6* NET9 NET7 

NET12 
ALA7: NETI*  NET2* 
DA8: NETI*  NET2* 
NMLg: NET8* NET4* NET6* NET9 NET7 

NET12 

TABLE 7 
SUPER GRAPH GTR (SPIN GRAPH TO RESIDUE RELATION) 

Graph name Candidatel Candidate2 Candidate3 Candidate4 

NET1 Abu Val Ala D-Ala 
NET2 Abu Ala D-Ala 
NET3 Abu Val Mbt Nml 
NET4 Nml 
NET5 Mbt 
NET6 Nml 
NET7 Nmv Yal Abu Nml 
NET8 Nml 
NET9 Nml 
NET 10 Abu Val 
NET 12 Sar Yal Abu Nmv 
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Residue 

MBT1 

ABU2 

SAR3 

NML4 

VAL5 

NML6 

ALA7 

D-ALAS 

NML9 

NMLIO 

NMV11 

Candidatel Candidate2 Candidate3 

TI~ NET1 NET7 NET3 NET12 

NET8 NET4 . ~ r  NET9 NET/ 

( ~  "~--N ET2 

NET1 ~ ( ~  

| 

Candidate4 : Candidate5 Candidate6 

Fig. 9. Super graph RTG (residue to spin graph relation). 

N ET2 

NML10: NET8* NET4* 
NET12 

NMVl l :  NET7* NET12 

NET6* NET9 NET7 

Sequential_assignment from MBT1 to NMVl l :  
Cannot find connected sequentials from MBT1 to 
NMV11. 

Possible sequentials are: 
Assign NET5 to MBT1 - P1 P9 
Assign NET10 to ABU2 - - - 
Assign NET12 to SAR3 - - - 
Assign NET8 to NML4 - P5 - 
Assign NET3 to VAL5 - - - 
Assign NET6 to NML6 - P3 - 
Assign NET1 to ALA7 P132 - - 
Assign NET2 to DA8 - - - 
Assign NET4 to NML9 ??? 
Assign NET9 to NML10 ??? 
Assign NET7 to NMV11 

The first block is the same as in Fig. 9; a candidate 
with '*' means that if this candidate is assigned to the 
corresponding residue, every spin in the residue will be 
assigned with a chemical shift value. The second block 
tells us that the program has not found connected sequen- 
tials, but it suggests the best possible sequential assign- 
ment. The last columns list the sequential NH-NH, H ~- 
NH, and H~-NH NOESY peaks. ' - '  indicates that the 
corresponding sequential NOESY peak is not found. '???' 
means that no sequential evidence is present to distinguish 
NML9 and NML10. This is expected, as there are no HN 
atoms in residues 9-11, therefore no sequential NOE is 
possible. To assign NML9 and NML10, N-CH 3 groups 
at NML9 and NML10 have to be assigned from other 
spectra, such as 1H,13C-COSY and NOESY spectra 
(Kessler et al., 1985). 

Once the sequence-specific assignment is done, the 
program automatically gives each observed chemical shift 

with the corresponding atom name, and the chemical shift 
assignments are stored into a Master Assignment list. 
Based on this list, the other NOESY peaks are assigned 
and verified. 

In this paper, all of the cyclosporin A protons have 
been automatically and correctly assigned (Kessler et al., 
1985). It should be noted that the present version of the 
program makes no attempt at stereospecific assignment. 
The Residue Knowledge Base, CPA, CPSPA, FGRRA, 
CTSA, and a number of graph theory algorithms to 
reconnect spin coupling networks, indicate artifact peaks, 
etc., are merged into a commercial product named 
CAPRI, available from TRIPOS, Inc., St. Louis, MO. 
CAPRI is fully integrated with the TRIPOS NMR pack- 
age, TRIAD, and the modeling package SYBYL. 

Conclusions 

Both manual and computer-assisted assignment of 
multidimensional NMR spectra must resolve a number of 
'fuzzy' issues: the information is usually incomplete, over- 
lapping, distorted and partially redundant. This makes it 
difficult to compose computer-assisted algorithms built 
around 'yes/no' choices. This paper describes a general 
approach using pattern recognition, built on a framework 
of graph theory and fuzzy mathematics. 

This approach allows the construction of rigorous and 
easily extendible algorithms for assigning spectra, and 
combining information from related spectra. Spin coup- 
ling networks are graphs that are simple to construct 
from a molecular structure - these are called theoretical 
spin coupling networks or spin coupling network Cluster 
Centers. The spin coupling patterns distinguished in spec- 
tra must be fuzzy subgraphs of those predicted from the 
structure; thus, the pattern matching is quite direct. 

Calculations using fuzzy mathematics are distinct from 
a rule-based approach that uses tolerances or thresholds. 
First, our program allows spin coupling patterns and 
subpatterns to be recognized, even if the chemical shifts 
are far from the expected values. Second, it is possible to 
map a spectrally observed spin coupling pattern onto 
more than one spin coupling network Cluster Center. In 
this case, we use fuzzy mathematics to rank the possibil- 
ities and reduce the searching space. 

Assignment of multidimensional NMR spectra can be 
divided into a set of interlocking phases: 

(1) peak picking; 
(2) identification of spin coupling patterns; 
(3) sequence-specific assignment; and 
(4) structure determination. 

However, the phases are not independent. It is important 
to perform the peak picking stage with care, to avoid the 
potential for confusion or 'combinatorial explosion' when 
critical cross peaks are missed or extraneous peaks are in- 
cluded. At the second stage, our program assists the user 
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in distinguishing impurity or artifact peaks from real 
peaks and predicts missing and overlapping peaks. Addi- 
tional information regarding assignment and peak-list 
clean up can also appear at the third and fourth stages. 
Peak-list generation, assignment, structure determination 
and refinement should generally be regarded as an iterat- 
ire process. 

This paper illustrates the application of our program 
to the ~H NMR assignment of cyclosporin A, a cyclic 
peptide where 9 of the 11 residues are non-standard 
amino acids. The knowledge base of spin coupling Cluster 
Centers is easily modified to recognize non-standard 
spectral patterns. 2D COSY, TOCSY, and NOESY are 
the input spectra. We have shown how CAPRI is used 
for: 

(1) peak-list refinement; 
(2) joining spin coupling networks that were fragment- 

ed due to initially missing and overlapping peaks, or 
distorted by partially overlapping spin coupling networks; 
and 

(3) the improved sequence-specific assignment algo- 
rithm which was not described previously. 

The programs are more developed than those we have 
reported on before (Xu et al., 1993b). With the CPSPA 
algorithm, we can extract more complete spin coupling 
networks than before. For example, if we use CPA only, 
the program will give 19 spin coupling networks for 
cyclosporin A, and with CPA and CPSPA combined, this 
figure is reduced to 13. On the other hand, with CTSA, 
the sequence-specific assignment becomes more robust. 
The simple TSA is sensitive to side-chain NOESY peaks. 
However, CTSA is only sensitive to the quality of NH- 
NH, H~-NH, and HLNH NOEs (to deal with proline, 
NH-H ~, H~-H 5, and HLH ~ NOEs are taken into account). 

This methodology is not limited to homonuclear NMR 
spectra. For example, the TOCSY spectrum can be 
replaced by H,C-COSY, and no program code modifica- 
tion is needed. It can also work for some aspects of the 
assignment of natural products and other organic mol- 
ecules, because these structures can be logically divided 
into generalized residues. 
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